Source code for langchain_core.utils.function_calling
"""Methods for creating function specs in the style of OpenAI Functions"""
from __future__ import annotations
import collections
import inspect
import logging
import typing
import uuid
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
List,
Literal,
Optional,
Set,
Tuple,
Type,
Union,
cast,
)
from typing_extensions import Annotated, TypedDict, get_args, get_origin, is_typeddict
from langchain_core._api import deprecated
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, ToolMessage
from langchain_core.pydantic_v1 import BaseModel, Field, create_model
from langchain_core.utils.json_schema import dereference_refs
from langchain_core.utils.pydantic import is_basemodel_subclass
if TYPE_CHECKING:
from langchain_core.tools import BaseTool
logger = logging.getLogger(__name__)
PYTHON_TO_JSON_TYPES = {
"str": "string",
"int": "integer",
"float": "number",
"bool": "boolean",
}
[docs]
class FunctionDescription(TypedDict):
"""Representation of a callable function to send to an LLM."""
name: str
"""The name of the function."""
description: str
"""A description of the function."""
parameters: dict
"""The parameters of the function."""
[docs]
class ToolDescription(TypedDict):
"""Representation of a callable function to the OpenAI API."""
type: Literal["function"]
"""The type of the tool."""
function: FunctionDescription
"""The function description."""
def _rm_titles(kv: dict, prev_key: str = "") -> dict:
new_kv = {}
for k, v in kv.items():
if k == "title":
if isinstance(v, dict) and prev_key == "properties" and "title" in v.keys():
new_kv[k] = _rm_titles(v, k)
else:
continue
elif isinstance(v, dict):
new_kv[k] = _rm_titles(v, k)
else:
new_kv[k] = v
return new_kv
[docs]
@deprecated(
"0.1.16",
alternative="langchain_core.utils.function_calling.convert_to_openai_function()",
removal="0.3.0",
)
def convert_pydantic_to_openai_function(
model: Type[BaseModel],
*,
name: Optional[str] = None,
description: Optional[str] = None,
rm_titles: bool = True,
) -> FunctionDescription:
"""Converts a Pydantic model to a function description for the OpenAI API.
Args:
model: The Pydantic model to convert.
name: The name of the function. If not provided, the title of the schema will be
used.
description: The description of the function. If not provided, the description
of the schema will be used.
rm_titles: Whether to remove titles from the schema. Defaults to True.
Returns:
The function description.
"""
if hasattr(model, "model_json_schema"):
schema = model.model_json_schema() # Pydantic 2
else:
schema = model.schema() # Pydantic 1
schema = dereference_refs(schema)
schema.pop("definitions", None)
title = schema.pop("title", "")
default_description = schema.pop("description", "")
return {
"name": name or title,
"description": description or default_description,
"parameters": _rm_titles(schema) if rm_titles else schema,
}
[docs]
@deprecated(
"0.1.16",
alternative="langchain_core.utils.function_calling.convert_to_openai_tool()",
removal="0.3.0",
)
def convert_pydantic_to_openai_tool(
model: Type[BaseModel],
*,
name: Optional[str] = None,
description: Optional[str] = None,
) -> ToolDescription:
"""Converts a Pydantic model to a function description for the OpenAI API.
Args:
model: The Pydantic model to convert.
name: The name of the function. If not provided, the title of the schema will be
used.
description: The description of the function. If not provided, the description
of the schema will be used.
Returns:
The tool description.
"""
function = convert_pydantic_to_openai_function(
model, name=name, description=description
)
return {"type": "function", "function": function}
def _get_python_function_name(function: Callable) -> str:
"""Get the name of a Python function."""
return function.__name__
[docs]
@deprecated(
"0.1.16",
alternative="langchain_core.utils.function_calling.convert_to_openai_function()",
removal="0.3.0",
)
def convert_python_function_to_openai_function(
function: Callable,
) -> FunctionDescription:
"""Convert a Python function to an OpenAI function-calling API compatible dict.
Assumes the Python function has type hints and a docstring with a description. If
the docstring has Google Python style argument descriptions, these will be
included as well.
Args:
function: The Python function to convert.
Returns:
The OpenAI function description.
"""
from langchain_core.tools.base import create_schema_from_function
func_name = _get_python_function_name(function)
model = create_schema_from_function(
func_name,
function,
filter_args=(),
parse_docstring=True,
error_on_invalid_docstring=False,
include_injected=False,
)
return convert_pydantic_to_openai_function(
model,
name=func_name,
description=model.__doc__,
)
def _convert_typed_dict_to_openai_function(typed_dict: Type) -> FunctionDescription:
visited: Dict = {}
model = cast(
Type[BaseModel],
_convert_any_typed_dicts_to_pydantic(typed_dict, visited=visited),
)
return convert_pydantic_to_openai_function(model)
_MAX_TYPED_DICT_RECURSION = 25
def _convert_any_typed_dicts_to_pydantic(
type_: Type,
*,
visited: Dict,
depth: int = 0,
) -> Type:
if type_ in visited:
return visited[type_]
elif depth >= _MAX_TYPED_DICT_RECURSION:
return type_
elif is_typeddict(type_):
typed_dict = type_
docstring = inspect.getdoc(typed_dict)
annotations_ = typed_dict.__annotations__
description, arg_descriptions = _parse_google_docstring(
docstring, list(annotations_)
)
fields: dict = {}
for arg, arg_type in annotations_.items():
if get_origin(arg_type) is Annotated:
annotated_args = get_args(arg_type)
new_arg_type = _convert_any_typed_dicts_to_pydantic(
annotated_args[0], depth=depth + 1, visited=visited
)
field_kwargs = {
k: v for k, v in zip(("default", "description"), annotated_args[1:])
}
if (field_desc := field_kwargs.get("description")) and not isinstance(
field_desc, str
):
raise ValueError(
f"Invalid annotation for field {arg}. Third argument to "
f"Annotated must be a string description, received value of "
f"type {type(field_desc)}."
)
elif arg_desc := arg_descriptions.get(arg):
field_kwargs["description"] = arg_desc
else:
pass
fields[arg] = (new_arg_type, Field(**field_kwargs))
else:
new_arg_type = _convert_any_typed_dicts_to_pydantic(
arg_type, depth=depth + 1, visited=visited
)
field_kwargs = {"default": ...}
if arg_desc := arg_descriptions.get(arg):
field_kwargs["description"] = arg_desc
fields[arg] = (new_arg_type, Field(**field_kwargs))
model = create_model(typed_dict.__name__, **fields)
model.__doc__ = description
visited[typed_dict] = model
return model
elif (origin := get_origin(type_)) and (type_args := get_args(type_)):
subscriptable_origin = _py_38_safe_origin(origin)
type_args = tuple(
_convert_any_typed_dicts_to_pydantic(arg, depth=depth + 1, visited=visited)
for arg in type_args
)
return subscriptable_origin[type_args]
else:
return type_
[docs]
@deprecated(
"0.1.16",
alternative="langchain_core.utils.function_calling.convert_to_openai_function()",
removal="0.3.0",
)
def format_tool_to_openai_function(tool: BaseTool) -> FunctionDescription:
"""Format tool into the OpenAI function API.
Args:
tool: The tool to format.
Returns:
The function description.
"""
if tool.tool_call_schema:
return convert_pydantic_to_openai_function(
tool.tool_call_schema, name=tool.name, description=tool.description
)
else:
return {
"name": tool.name,
"description": tool.description,
"parameters": {
# This is a hack to get around the fact that some tools
# do not expose an args_schema, and expect an argument
# which is a string.
# And Open AI does not support an array type for the
# parameters.
"properties": {
"__arg1": {"title": "__arg1", "type": "string"},
},
"required": ["__arg1"],
"type": "object",
},
}
[docs]
@deprecated(
"0.1.16",
alternative="langchain_core.utils.function_calling.convert_to_openai_tool()",
removal="0.3.0",
)
def format_tool_to_openai_tool(tool: BaseTool) -> ToolDescription:
"""Format tool into the OpenAI function API.
Args:
tool: The tool to format.
Returns:
The tool description.
"""
function = format_tool_to_openai_function(tool)
return {"type": "function", "function": function}
[docs]
def convert_to_openai_function(
function: Union[Dict[str, Any], Type, Callable, BaseTool],
*,
strict: Optional[bool] = None,
) -> Dict[str, Any]:
"""Convert a raw function/class to an OpenAI function.
.. versionchanged:: 0.2.29
``strict`` arg added.
Args:
function:
A dictionary, Pydantic BaseModel class, TypedDict class, a LangChain
Tool object, or a Python function. If a dictionary is passed in, it is
assumed to already be a valid OpenAI function or a JSON schema with
top-level 'title' and 'description' keys specified.
strict:
If True, model output is guaranteed to exactly match the JSON Schema
provided in the function definition. If None, ``strict`` argument will not
be included in function definition.
.. versionadded:: 0.2.29
Returns:
A dict version of the passed in function which is compatible with the OpenAI
function-calling API.
Raises:
ValueError: If function is not in a supported format.
"""
from langchain_core.tools import BaseTool
# already in OpenAI function format
if isinstance(function, dict) and all(
k in function for k in ("name", "description", "parameters")
):
oai_function = function
# a JSON schema with title and description
elif isinstance(function, dict) and all(
k in function for k in ("title", "description", "properties")
):
function = function.copy()
oai_function = {
"name": function.pop("title"),
"description": function.pop("description"),
"parameters": function,
}
elif isinstance(function, type) and is_basemodel_subclass(function):
oai_function = cast(Dict, convert_pydantic_to_openai_function(function))
elif is_typeddict(function):
oai_function = cast(
Dict, _convert_typed_dict_to_openai_function(cast(Type, function))
)
elif isinstance(function, BaseTool):
oai_function = cast(Dict, format_tool_to_openai_function(function))
elif callable(function):
oai_function = cast(Dict, convert_python_function_to_openai_function(function))
else:
raise ValueError(
f"Unsupported function\n\n{function}\n\nFunctions must be passed in"
" as Dict, pydantic.BaseModel, or Callable. If they're a dict they must"
" either be in OpenAI function format or valid JSON schema with top-level"
" 'title' and 'description' keys."
)
if strict is not None:
oai_function["strict"] = strict
# As of 08/06/24, OpenAI requires that additionalProperties be supplied and set
# to False if strict is True.
oai_function["parameters"]["additionalProperties"] = False
return oai_function
[docs]
def convert_to_openai_tool(
tool: Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool],
*,
strict: Optional[bool] = None,
) -> Dict[str, Any]:
"""Convert a raw function/class to an OpenAI tool.
.. versionchanged:: 0.2.29
``strict`` arg added.
Args:
tool:
Either a dictionary, a pydantic.BaseModel class, Python function, or
BaseTool. If a dictionary is passed in, it is assumed to already be a valid
OpenAI tool, OpenAI function, or a JSON schema with top-level 'title' and
'description' keys specified.
strict:
If True, model output is guaranteed to exactly match the JSON Schema
provided in the function definition. If None, ``strict`` argument will not
be included in tool definition.
.. versionadded:: 0.2.29
Returns:
A dict version of the passed in tool which is compatible with the
OpenAI tool-calling API.
"""
if isinstance(tool, dict) and tool.get("type") == "function" and "function" in tool:
return tool
oai_function = convert_to_openai_function(tool, strict=strict)
oai_tool: Dict[str, Any] = {"type": "function", "function": oai_function}
return oai_tool
[docs]
def tool_example_to_messages(
input: str, tool_calls: List[BaseModel], tool_outputs: Optional[List[str]] = None
) -> List[BaseMessage]:
"""Convert an example into a list of messages that can be fed into an LLM.
This code is an adapter that converts a single example to a list of messages
that can be fed into a chat model.
The list of messages per example corresponds to:
1) HumanMessage: contains the content from which content should be extracted.
2) AIMessage: contains the extracted information from the model
3) ToolMessage: contains confirmation to the model that the model requested a tool
correctly.
The ToolMessage is required because some chat models are hyper-optimized for agents
rather than for an extraction use case.
Arguments:
input: string, the user input
tool_calls: List[BaseModel], a list of tool calls represented as Pydantic
BaseModels
tool_outputs: Optional[List[str]], a list of tool call outputs.
Does not need to be provided. If not provided, a placeholder value
will be inserted. Defaults to None.
Returns:
A list of messages
Examples:
.. code-block:: python
from typing import List, Optional
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_openai import ChatOpenAI
class Person(BaseModel):
'''Information about a person.'''
name: Optional[str] = Field(..., description="The name of the person")
hair_color: Optional[str] = Field(
..., description="The color of the person's hair if known"
)
height_in_meters: Optional[str] = Field(
..., description="Height in METERs"
)
examples = [
(
"The ocean is vast and blue. It's more than 20,000 feet deep.",
Person(name=None, height_in_meters=None, hair_color=None),
),
(
"Fiona traveled far from France to Spain.",
Person(name="Fiona", height_in_meters=None, hair_color=None),
),
]
messages = []
for txt, tool_call in examples:
messages.extend(
tool_example_to_messages(txt, [tool_call])
)
"""
messages: List[BaseMessage] = [HumanMessage(content=input)]
openai_tool_calls = []
for tool_call in tool_calls:
openai_tool_calls.append(
{
"id": str(uuid.uuid4()),
"type": "function",
"function": {
# The name of the function right now corresponds to the name
# of the pydantic model. This is implicit in the API right now,
# and will be improved over time.
"name": tool_call.__class__.__name__,
"arguments": tool_call.json(),
},
}
)
messages.append(
AIMessage(content="", additional_kwargs={"tool_calls": openai_tool_calls})
)
tool_outputs = tool_outputs or ["You have correctly called this tool."] * len(
openai_tool_calls
)
for output, tool_call_dict in zip(tool_outputs, openai_tool_calls):
messages.append(ToolMessage(content=output, tool_call_id=tool_call_dict["id"])) # type: ignore
return messages
def _parse_google_docstring(
docstring: Optional[str],
args: List[str],
*,
error_on_invalid_docstring: bool = False,
) -> Tuple[str, dict]:
"""Parse the function and argument descriptions from the docstring of a function.
Assumes the function docstring follows Google Python style guide.
"""
if docstring:
docstring_blocks = docstring.split("\n\n")
if error_on_invalid_docstring:
filtered_annotations = {
arg for arg in args if arg not in ("run_manager", "callbacks", "return")
}
if filtered_annotations and (
len(docstring_blocks) < 2 or not docstring_blocks[1].startswith("Args:")
):
raise ValueError("Found invalid Google-Style docstring.")
descriptors = []
args_block = None
past_descriptors = False
for block in docstring_blocks:
if block.startswith("Args:"):
args_block = block
break
elif block.startswith("Returns:") or block.startswith("Example:"):
# Don't break in case Args come after
past_descriptors = True
elif not past_descriptors:
descriptors.append(block)
else:
continue
description = " ".join(descriptors)
else:
if error_on_invalid_docstring:
raise ValueError("Found invalid Google-Style docstring.")
description = ""
args_block = None
arg_descriptions = {}
if args_block:
arg = None
for line in args_block.split("\n")[1:]:
if ":" in line:
arg, desc = line.split(":", maxsplit=1)
arg_descriptions[arg.strip()] = desc.strip()
elif arg:
arg_descriptions[arg.strip()] += " " + line.strip()
return description, arg_descriptions
def _py_38_safe_origin(origin: Type) -> Type:
origin_map: Dict[Type, Any] = {
dict: Dict,
list: List,
tuple: Tuple,
set: Set,
collections.abc.Iterable: typing.Iterable,
collections.abc.Mapping: typing.Mapping,
collections.abc.Sequence: typing.Sequence,
collections.abc.MutableMapping: typing.MutableMapping,
}
return cast(Type, origin_map.get(origin, origin))