"""Retriever wrapper for Google Vertex AI Search.
Set the following environment variables before the tests:
export PROJECT_ID=... - set to your Google Cloud project ID
export DATA_STORE_ID=... - the ID of the search engine to use for the test
"""
from __future__ import annotations
import json
import warnings
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence
from google.api_core.client_options import ClientOptions
from google.api_core.exceptions import InvalidArgument
from google.protobuf.json_format import MessageToDict
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.load import Serializable, load
from langchain_core.pydantic_v1 import Extra, Field, root_validator
from langchain_core.retrievers import BaseRetriever
from langchain_core.tools import BaseTool
from langchain_core.utils import get_from_dict_or_env
from langchain_google_community._utils import get_client_info
if TYPE_CHECKING:
from google.cloud.discoveryengine_v1beta import ( # type: ignore[import, attr-defined]
ConversationalSearchServiceClient,
SearchRequest,
SearchResult,
SearchServiceClient,
)
def _load(dump: Dict[str, Any]) -> Any:
return load(dump, valid_namespaces=["langchain_google_community"])
class _BaseVertexAISearchRetriever(Serializable):
project_id: str
"""Google Cloud Project ID."""
data_store_id: str
"""Vertex AI Search data store ID."""
location_id: str = "global"
"""Vertex AI Search data store location."""
serving_config_id: str = "default_config"
"""Vertex AI Search serving config ID."""
credentials: Any = None
"""The default custom credentials (google.auth.credentials.Credentials) to use
when making API calls. If not provided, credentials will be ascertained from
the environment."""
engine_data_type: int = Field(default=0, ge=0, le=2)
""" Defines the Vertex AI Search data type
0 - Unstructured data
1 - Structured data
2 - Website data
"""
@classmethod
def is_lc_serializable(self) -> bool:
return True
def __reduce__(self) -> Any:
return _load, (self.to_json(),)
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validates the environment."""
try:
from google.cloud import discoveryengine_v1beta # noqa: F401
except ImportError as exc:
raise ImportError(
"Could not import google-cloud-discoveryengine python package. "
"Please, install vertexaisearch dependency group: "
"poetry install --with vertexaisearch"
) from exc
values["project_id"] = get_from_dict_or_env(values, "project_id", "PROJECT_ID")
try:
# For backwards compatibility
search_engine_id = get_from_dict_or_env(
values, "search_engine_id", "SEARCH_ENGINE_ID"
)
if search_engine_id:
warnings.warn(
"The `search_engine_id` parameter is deprecated. Use `data_store_id` instead.", # noqa: E501
DeprecationWarning,
)
values["data_store_id"] = search_engine_id
except: # noqa: E722
pass
values["data_store_id"] = get_from_dict_or_env(
values, "data_store_id", "DATA_STORE_ID"
)
return values
@property
def client_options(self) -> "ClientOptions":
return ClientOptions(
api_endpoint=(
f"{self.location_id}-discoveryengine.googleapis.com"
if self.location_id != "global"
else None
)
)
def _convert_structured_search_response(
self, results: Sequence[SearchResult]
) -> List[Document]:
"""Converts a sequence of search results to a list of LangChain documents."""
documents: List[Document] = []
for result in results:
document_dict = MessageToDict(
result.document._pb, preserving_proto_field_name=True
)
documents.append(
Document(
page_content=json.dumps(document_dict.get("struct_data", {})),
metadata={"id": document_dict["id"], "name": document_dict["name"]},
)
)
return documents
def _convert_unstructured_search_response(
self, results: Sequence[SearchResult], chunk_type: str
) -> List[Document]:
"""Converts a sequence of search results to a list of LangChain documents."""
documents: List[Document] = []
for result in results:
document_dict = MessageToDict(
result.document._pb, preserving_proto_field_name=True
)
derived_struct_data = document_dict.get("derived_struct_data")
if not derived_struct_data:
continue
doc_metadata = document_dict.get("struct_data", {})
doc_metadata["id"] = document_dict["id"]
if chunk_type not in derived_struct_data:
continue
for chunk in derived_struct_data[chunk_type]:
chunk_metadata = doc_metadata.copy()
chunk_metadata["source"] = derived_struct_data.get("link", "")
if (
chunk_type == "extractive_answers"
or chunk_type == "extractive_segments"
):
chunk_metadata["source"] += f":{chunk.get('pageNumber', '')}"
documents.append(
Document(
page_content=chunk.get("content", ""), metadata=chunk_metadata
)
)
return documents
def _convert_website_search_response(
self, results: Sequence[SearchResult], chunk_type: str
) -> List[Document]:
"""Converts a sequence of search results to a list of LangChain documents."""
documents: List[Document] = []
for result in results:
document_dict = MessageToDict(
result.document._pb, preserving_proto_field_name=True
)
derived_struct_data = document_dict.get("derived_struct_data")
if not derived_struct_data:
continue
doc_metadata = document_dict.get("struct_data", {})
doc_metadata["id"] = document_dict["id"]
doc_metadata["source"] = derived_struct_data.get("link", "")
if chunk_type not in derived_struct_data:
continue
text_field = "snippet" if chunk_type == "snippets" else "content"
for chunk in derived_struct_data[chunk_type]:
documents.append(
Document(
page_content=chunk.get(text_field, ""), metadata=doc_metadata
)
)
if not documents:
print(f"No {chunk_type} could be found.") # noqa: T201
if chunk_type == "extractive_answers":
print( # noqa: T201
"Make sure that your data store is using Advanced Website "
"Indexing.\n"
"https://cloud.google.com/generative-ai-app-builder/docs/about-advanced-features#advanced-website-indexing" # noqa: E501
)
return documents
[docs]
class VertexAISearchRetriever(BaseRetriever, _BaseVertexAISearchRetriever):
"""`Google Vertex AI Search` retriever.
For a detailed explanation of the Vertex AI Search concepts
and configuration parameters, refer to the product documentation.
https://cloud.google.com/generative-ai-app-builder/docs/enterprise-search-introduction
"""
filter: Optional[str] = None
"""Filter expression."""
get_extractive_answers: bool = False
"""If True return Extractive Answers, otherwise return Extractive Segments or Snippets.""" # noqa: E501
max_documents: int = Field(default=5, ge=1, le=100)
"""The maximum number of documents to return."""
max_extractive_answer_count: int = Field(default=1, ge=1, le=5)
"""The maximum number of extractive answers returned in each search result.
At most 5 answers will be returned for each SearchResult.
"""
max_extractive_segment_count: int = Field(default=1, ge=1, le=1)
"""The maximum number of extractive segments returned in each search result.
Currently one segment will be returned for each SearchResult.
"""
query_expansion_condition: int = Field(default=1, ge=0, le=2)
"""Specification to determine under which conditions query expansion should occur.
0 - Unspecified query expansion condition. In this case, server behavior defaults
to disabled
1 - Disabled query expansion. Only the exact search query is used, even if
SearchResponse.total_size is zero.
2 - Automatic query expansion built by the Search API.
"""
spell_correction_mode: int = Field(default=2, ge=0, le=2)
"""Specification to determine under which conditions query expansion should occur.
0 - Unspecified spell correction mode. In this case, server behavior defaults
to auto.
1 - Suggestion only. Search API will try to find a spell suggestion if there is any
and put in the `SearchResponse.corrected_query`.
The spell suggestion will not be used as the search query.
2 - Automatic spell correction built by the Search API.
Search will be based on the corrected query if found.
"""
boost_spec: Optional[Dict[Any, Any]] = None
"""BoostSpec for boosting search results. A protobuf should be provided.
https://cloud.google.com/generative-ai-app-builder/docs/boost-search-results
https://cloud.google.com/generative-ai-app-builder/docs/reference/rest/v1beta/BoostSpec
"""
_client: SearchServiceClient
_serving_config: str
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
underscore_attrs_are_private = True
def __init__(self, **kwargs: Any) -> None:
"""Initializes private fields."""
try:
from google.cloud.discoveryengine_v1beta import SearchServiceClient
except ImportError as exc:
raise ImportError(
"Could not import google-cloud-discoveryengine python package. "
"Please, install vertexaisearch dependency group: "
"`pip install langchain-google-community[vertexaisearch]`"
) from exc
try:
super().__init__(**kwargs)
except ValueError as e:
print(f"Error initializing GoogleVertexAISearchRetriever: {str(e)}")
raise
# For more information, refer to:
# https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
self._client = SearchServiceClient(
credentials=self.credentials,
client_options=self.client_options,
client_info=get_client_info(module="vertex-ai-search"),
)
self._serving_config = self._client.serving_config_path(
project=self.project_id,
location=self.location_id,
data_store=self.data_store_id,
serving_config=self.serving_config_id,
)
def _get_content_spec_kwargs(self) -> Optional[Dict[str, Any]]:
"""Prepares a ContentSpec object."""
from google.cloud.discoveryengine_v1beta import SearchRequest
if self.engine_data_type == 0:
if self.get_extractive_answers:
extractive_content_spec = (
SearchRequest.ContentSearchSpec.ExtractiveContentSpec(
max_extractive_answer_count=self.max_extractive_answer_count,
)
)
else:
extractive_content_spec = (
SearchRequest.ContentSearchSpec.ExtractiveContentSpec(
max_extractive_segment_count=self.max_extractive_segment_count,
)
)
content_search_spec = dict(extractive_content_spec=extractive_content_spec)
elif self.engine_data_type == 1:
content_search_spec = None
elif self.engine_data_type == 2:
content_search_spec = dict(
extractive_content_spec=SearchRequest.ContentSearchSpec.ExtractiveContentSpec(
max_extractive_answer_count=self.max_extractive_answer_count,
),
snippet_spec=SearchRequest.ContentSearchSpec.SnippetSpec(
return_snippet=True
),
)
else:
raise NotImplementedError(
"Only data store type 0 (Unstructured), 1 (Structured),"
"or 2 (Website) are supported currently."
+ f" Got {self.engine_data_type}"
)
return content_search_spec
def _create_search_request(self, query: str) -> SearchRequest:
"""Prepares a SearchRequest object."""
from google.cloud.discoveryengine_v1beta import SearchRequest
query_expansion_spec = SearchRequest.QueryExpansionSpec(
condition=self.query_expansion_condition,
)
spell_correction_spec = SearchRequest.SpellCorrectionSpec(
mode=self.spell_correction_mode
)
content_search_spec_kwargs = self._get_content_spec_kwargs()
if content_search_spec_kwargs is not None:
content_search_spec = SearchRequest.ContentSearchSpec(
**content_search_spec_kwargs
)
else:
content_search_spec = None
return SearchRequest(
query=query,
filter=self.filter,
serving_config=self._serving_config,
page_size=self.max_documents,
content_search_spec=content_search_spec,
query_expansion_spec=query_expansion_spec,
spell_correction_spec=spell_correction_spec,
boost_spec=SearchRequest.BoostSpec(**self.boost_spec)
if self.boost_spec
else None,
)
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
"""Get documents relevant for a query."""
search_request = self._create_search_request(query)
try:
response = self._client.search(search_request)
except InvalidArgument as exc:
raise type(exc)(
exc.message
+ " This might be due to engine_data_type not set correctly."
)
if self.engine_data_type == 0:
chunk_type = (
"extractive_answers"
if self.get_extractive_answers
else "extractive_segments"
)
documents = self._convert_unstructured_search_response(
response.results, chunk_type
)
elif self.engine_data_type == 1:
documents = self._convert_structured_search_response(response.results)
elif self.engine_data_type == 2:
chunk_type = (
"extractive_answers" if self.get_extractive_answers else "snippets"
)
documents = self._convert_website_search_response(
response.results, chunk_type
)
else:
raise NotImplementedError(
"Only data store type 0 (Unstructured), 1 (Structured),"
"or 2 (Website) are supported currently."
+ f" Got {self.engine_data_type}"
)
return documents
[docs]
class VertexAIMultiTurnSearchRetriever(BaseRetriever, _BaseVertexAISearchRetriever):
"""`Google Vertex AI Search` retriever for multi-turn conversations."""
conversation_id: str = "-"
"""Vertex AI Search Conversation ID."""
_client: ConversationalSearchServiceClient
_serving_config: str
class Config:
"""Configuration for this pydantic object."""
extra = Extra.ignore
arbitrary_types_allowed = True
underscore_attrs_are_private = True
def __init__(self, **kwargs: Any):
super().__init__(**kwargs)
from google.cloud.discoveryengine_v1beta import (
ConversationalSearchServiceClient,
)
self._client = ConversationalSearchServiceClient(
credentials=self.credentials,
client_options=self.client_options,
client_info=get_client_info(module="vertex-ai-search"),
)
self._serving_config = self._client.serving_config_path(
project=self.project_id,
location=self.location_id,
data_store=self.data_store_id,
serving_config=self.serving_config_id,
)
if self.engine_data_type == 1:
raise NotImplementedError(
"Data store type 1 (Structured)"
"is not currently supported for multi-turn search."
+ f" Got {self.engine_data_type}"
)
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
"""Get documents relevant for a query."""
from google.cloud.discoveryengine_v1beta import (
ConverseConversationRequest,
TextInput,
)
request = ConverseConversationRequest(
name=self._client.conversation_path(
self.project_id,
self.location_id,
self.data_store_id,
self.conversation_id,
),
serving_config=self._serving_config,
query=TextInput(input=query),
)
response = self._client.converse_conversation(request)
if self.engine_data_type == 2:
return self._convert_website_search_response(
response.search_results, "extractive_answers"
)
return self._convert_unstructured_search_response(
response.search_results, "extractive_answers"
)