ApproxRetrievalStrategy#
- class langchain_elasticsearch.vectorstores.ApproxRetrievalStrategy(query_model_id: str | None = None, hybrid: bool | None = False, rrf: dict | bool | None = True)[source]#
- Deprecated since version 0.2.0: Use - DenseVectorStrategyinstead.- Approximate retrieval strategy using the HNSW algorithm. - Methods - __init__([query_model_id, hybrid, rrf])- before_index_setup(client, text_field, ...)- Executes before the index is created. - index(dims_length, vector_query_field, ...)- Create the mapping for the Elasticsearch index. - query(query_vector, query, k, fetch_k, ...)- Executes when a search is performed on the store. - Returns whether or not the strategy requires inference to be performed on the text before it is added to the index. - Parameters:
- query_model_id (str | None) 
- hybrid (bool | None) 
- rrf (dict | bool | None) 
 
 - __init__(query_model_id: str | None = None, hybrid: bool | None = False, rrf: dict | bool | None = True)[source]#
- Parameters:
- query_model_id (str | None) 
- hybrid (bool | None) 
- rrf (dict | bool | None) 
 
 
 - before_index_setup(client: Elasticsearch, text_field: str, vector_query_field: str) None[source]#
- Executes before the index is created. Used for setting up any required Elasticsearch resources like a pipeline. - Parameters:
- client (Elasticsearch) – The Elasticsearch client. 
- text_field (str) – The field containing the text data in the index. 
- vector_query_field (str) – The field containing the vector representations in the index. 
 
- Return type:
- None 
 
 - index(dims_length: int | None, vector_query_field: str, text_field: str, similarity: DistanceStrategy | None) Dict[source]#
- Create the mapping for the Elasticsearch index. - Parameters:
- dims_length (int | None) 
- vector_query_field (str) 
- text_field (str) 
- similarity (DistanceStrategy | None) 
 
- Return type:
- Dict 
 
 - query(query_vector: List[float] | None, query: str | None, k: int, fetch_k: int, vector_query_field: str, text_field: str, filter: List[dict], similarity: DistanceStrategy | None) Dict[source]#
- Executes when a search is performed on the store. - Parameters:
- query_vector (List[float] | None) – The query vector, or None if not using vector-based query. 
- query (str | None) – The text query, or None if not using text-based query. 
- k (int) – The total number of results to retrieve. 
- fetch_k (int) – The number of results to fetch initially. 
- vector_query_field (str) – The field containing the vector representations in the index. 
- text_field (str) – The field containing the text data in the index. 
- filter (List[dict]) – List of filter clauses to apply to the query. 
- similarity (DistanceStrategy | None) – The similarity strategy to use, or None if not using one. 
 
- Returns:
- The Elasticsearch query body. 
- Return type:
- Dict 
 
 - require_inference() bool#
- Returns whether or not the strategy requires inference to be performed on the text before it is added to the index. - Returns:
- Whether or not the strategy requires inference to be performed on the text before it is added to the index. 
- Return type:
- bool 
 
 
