agents
#
Agent is a class that uses an LLM to choose a sequence of actions to take.
In Chains, a sequence of actions is hardcoded. In Agents, a language model is used as a reasoning engine to determine which actions to take and in which order.
Agents select and use Tools and Toolkits for actions.
Class hierarchy:
BaseSingleActionAgent --> LLMSingleActionAgent
OpenAIFunctionsAgent
XMLAgent
Agent --> <name>Agent # Examples: ZeroShotAgent, ChatAgent
BaseMultiActionAgent --> OpenAIMultiFunctionsAgent
Main helpers:
AgentType, AgentExecutor, AgentOutputParser, AgentExecutorIterator,
AgentAction, AgentFinish
Classes
Agent that is using tools. |
|
Base class for parsing agent output into agent action/finish. |
|
Base Multi Action Agent class. |
|
Base Single Action Agent class. |
|
Tool that just returns the query. |
|
Base class for parsing agent output into agent actions/finish. |
|
Agent powered by Runnables. |
|
Agent powered by Runnables. |
|
Iterator for AgentExecutor. |
|
Information about a VectorStore. |
|
|
Toolkit for routing between Vector Stores. |
|
Toolkit for interacting with a Vector Store. |
Output parser for the chat agent. |
|
Output parser for the conversational agent. |
|
Output parser for the conversational agent. |
|
|
Configuration for a chain to use in MRKL system. |
MRKL Output parser for the chat agent. |
|
AgentAction with info needed to submit custom tool output to existing run. |
|
AgentFinish with run and thread metadata. |
|
Run an OpenAI Assistant. |
|
|
Memory used to save agent output AND intermediate steps. |
Parses tool invocations and final answers in JSON format. |
|
|
Parses a message into agent action/finish. |
|
Parses a message into agent actions/finish. |
|
Parses ReAct-style LLM calls that have a single tool input in json format. |
|
Parses ReAct-style LLM calls that have a single tool input. |
Parses self-ask style LLM calls. |
|
Parses a message into agent actions/finish. |
|
Parses tool invocations and final answers in XML format. |
|
Output parser for the ReAct agent. |
|
Chat prompt template for the agent scratchpad. |
|
|
Output parser for the structured chat agent. |
|
Output parser with retries for the structured chat agent. |
Tool that is run when invalid tool name is encountered by agent. |
Functions
A convenience method for creating a conversational retrieval agent. |
|
|
Construct a VectorStore agent from an LLM and tools. |
|
Construct a VectorStore router agent from an LLM and tools. |
Construct the scratchpad that lets the agent continue its thought process. |
|
|
Construct the scratchpad that lets the agent continue its thought process. |
|
Convert (AgentAction, tool output) tuples into FunctionMessages. |
|
Convert (AgentAction, tool output) tuples into FunctionMessages. |
Convert (AgentAction, tool output) tuples into ToolMessages. |
|
Format the intermediate steps as XML. |
|
Create an agent that uses JSON to format its logic, build for Chat Models. |
|
|
Create an agent that uses OpenAI function calling. |
Create an agent that uses OpenAI tools. |
|
|
Parse an AI message potentially containing tool_calls. |
|
Parse an AI message potentially containing tool_calls. |
|
Create an agent that uses ReAct prompting. |
|
Create an agent that uses self-ask with search prompting. |
|
Create an agent aimed at supporting tools with multiple inputs. |
|
Create an agent that uses tools. |
Validate tools for single input. |
|
|
Create an agent that uses XML to format its logic. |
Deprecated classes
|
|
|
|
|
|
Deprecated functions
|
|
|
|