BaseSingleActionAgent#
- class langchain.agents.agent.BaseSingleActionAgent[source]#
- Bases: - BaseModel- Base Single Action Agent class. - Create a new model by parsing and validating input data from keyword arguments. - Raises ValidationError if the input data cannot be parsed to form a valid model. - abstract async aplan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: List[BaseCallbackHandler] | BaseCallbackManager | None = None, **kwargs: Any) AgentAction | AgentFinish[source]#
- Async given input, decided what to do. - Parameters:
- intermediate_steps (List[Tuple[AgentAction, str]]) β Steps the LLM has taken to date, along with observations. 
- callbacks (List[BaseCallbackHandler] | BaseCallbackManager | None) β Callbacks to run. 
- **kwargs (Any) β User inputs. 
 
- Returns:
- Action specifying what tool to use. 
- Return type:
 
 - classmethod from_llm_and_tools(llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: BaseCallbackManager | None = None, **kwargs: Any) BaseSingleActionAgent[source]#
- Construct an agent from an LLM and tools. - Parameters:
- llm (BaseLanguageModel) β Language model to use. 
- tools (Sequence[BaseTool]) β Tools to use. 
- callback_manager (BaseCallbackManager | None) β Callback manager to use. 
- kwargs (Any) β Additional arguments. 
 
- Returns:
- Agent object. 
- Return type:
 
 - abstract plan(intermediate_steps: List[Tuple[AgentAction, str]], callbacks: List[BaseCallbackHandler] | BaseCallbackManager | None = None, **kwargs: Any) AgentAction | AgentFinish[source]#
- Given input, decided what to do. - Parameters:
- intermediate_steps (List[Tuple[AgentAction, str]]) β Steps the LLM has taken to date, along with observations. 
- callbacks (List[BaseCallbackHandler] | BaseCallbackManager | None) β Callbacks to run. 
- **kwargs (Any) β User inputs. 
 
- Returns:
- Action specifying what tool to use. 
- Return type:
 
 - return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any) AgentFinish[source]#
- Return response when agent has been stopped due to max iterations. - Parameters:
- early_stopping_method (str) β Method to use for early stopping. 
- intermediate_steps (List[Tuple[AgentAction, str]]) β Steps the LLM has taken to date, along with observations. 
- **kwargs (Any) β User inputs. 
 
- Returns:
- Agent finish object. 
- Return type:
- Raises:
- ValueError β If early_stopping_method is not supported. 
 
 - save(file_path: Path | str) None[source]#
- Save the agent. - Parameters:
- file_path (Path | str) β Path to file to save the agent to. 
- Return type:
- None 
 - Example: .. code-block:: python - # If working with agent executor agent.agent.save(file_path=βpath/agent.yamlβ) 
 - property return_values: List[str]#
- Return values of the agent. 
 
